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We propose two different macroscopic dynamics to describe the decay of metastable phases in
many-particle systems with local interactions. These dynamics depend on the macroscopic order
parameter m through the restricted free energy F'(m) and are designed to give the correct equilibrium
distribution for m. The connection between macroscopic dynamics and the underlying microscopic
dynamic is considered in the context of a projection-operator formalism. Application to the square-
lattice nearest-neighbor Ising ferromagnet gives good agreement with droplet theory and Monte
Carlo simulations of the underlying microscopic dynamic. This includes quantitative agreement
for the exponential dependence of the lifetime (7) on the inverse of the applied field H, and the
observation of distinct field regions in which A = d In({7)/d|H|*~® depends differently on |H|. In
addition, at very low temperatures we observe oscillatory behavior of A with respect to |H|, which
is due to the discreteness of the lattice and in agreement with rigorous results. Similarities and
differences between this work and earlier works on finite Ising models in the fixed-magnetization

JULY 1995

Method to study relaxation of metastable phases: Macroscopic mean-field dynamics

! Supercomputer Computations Research Institute, Florida State University, Tallahassee, Florida 32306-4052

ensemble are discussed.

PACS number(s): 64.60.My, 64.60.Qb, 02.70.Lq, 05.50.+q

L INTRODUCTION

Metastable phases are observed in a wide variety of
systems that exhibit first-order phase transitions. A few
examples are supercooled fluids, permanent magnets, fer-
roelectrics, and certain alloys. In high-energy physics
and cosmology, the existence of metastable phases has
also been discussed, such as the “false vacuum” associ-
ated with the electroweak phase transition, and the su-
percooled quark-gluon plasma associated with the QCD
confinement transition. In recent decades, much atten-
tion has been focused on the study of metastable phases
and the rate at which they decay to thermodynamic equi-
librium, but a fully satisfactory description has remained
elusive. A recent review with numerous references to spe-
cific realizations of metastable behavior in real and model
systems is found in Ref. [1].

In certain systems with weak long-range interactions,
infinitely long-lived metastable phases can exist in the
thermodynamic limit [2]. However, in systems with
short-range interactions, there exist no such stable non-
equilibrium states, even in the thermodynamic limit.
Nevertheless, for large but finite systems, the relaxation
time for short-range models can be extremely long com-
pared with any finite observation time [3—6]. Here, we de-
fine the term “metastability” to include this phenomenon
in short-range models. The long relaxation time is mainly
due to the large free energy of the local fluctuations that
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must spontaneously arise in order for the system to de-
cay into a globally stable phase. Due to the long relax-
ation time, it is difficult to tell metastable phases from
globally stable ones by observing only short-time fluctu-
ations. The explorations of phase space, characteristic of
the metastable phase, are expected to be those included
in a constrained partition function that excludes the mi-
crostates that dominate in equilibrium [2,7]. The appli-
cation of such ideas to a field-theoretical droplet model
with Fokker-Planck dynamics has shown that close to
coexistence, the nucleation rate for droplets of the equi-
librium phase is proportional to the imaginary part of a
complex-valued constrained free energy obtained by an-
alytic continuation from the equilibrium phase into the
metastable phase [8-10].

Recently, complex-valued constrained free energies
were numerically obtained for both the two-dimensional
nearest-neighbor Ising ferromagnet [11,12] and for mod-
els with weak long-range forces [13-15] by a constrained-
transfer-matrix method introduced by one of us [16].
Although no dynamical aspects were explicitly consid-
ered to obtain the constrained free energies, the average
free-energy cost of a critical droplet was obtained over a
wide range of fields and temperatures, in good agreement
with the predictions of field-theoretical droplet mod-
els [8-10,14,15,17] and Monte Carlo (MC) simulations
[1,4-6]. These results indicate the relevance of purely
static properties, such as the free energy, to the relaxation
behavior of metastable phases. Whereas any physical dy-
namic (consistent with a real experimental situation) is
bound to give the correct equilibrium Boltzmann distri-
bution for an infinitely long observation time, it is not yet
clear how relevant the static properties of a model are to
the study of the dynamical relaxation of a metastable
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phase towards equilibrium.

The observations discussed in the preceding para-
graph raise the interesting possibility that the informa-
tion stored in static quantities may be sufficient to de-
scribe the salient features of the relaxation behavior of
a metastable phase, even in a short-range-force system.
A quantity that contains all thermodynamically relevant
equilibrium information is the restricted bulk free energy,

F(m) = Fo(m) — BHNm., 1)

where m is the macroscopic order parameter conjugate to
the external field H. Here 8=1/T is the inverse temper-
ature with Boltzmann’s constant kg=1, and 3 has been
absorbed in F(m) and Fo(m). One can obtain F(m) ei-
ther exactly from exact enumerations for small systems,
or approximately, up to an additive constant, by Monte
Carlo simulation. The importance of the detailed shape
of the zero-field free energy Fo(m) for two-phase equilib-
ria and nucleation barriers has previously been discussed
by Schulman [3] and Binder and co-workers [18-20]. Gen-
eralizations of Eq. (1) to consider several macroscopic
densities and their conjugate fields are straightforward.

Since the restricted bulk free energy is (by definition)
projected onto a space spanned by one or a small number
of macroscopic densities, all detailed information about
microscopic spin configurations is lost. In this paper,
we investigate the possibility that macroscopic dynami-
cal properties that are common to several different micro-
scopic dynamics may, nevertheless, be extracted from the
information retained in F'(m). For this purpose, we con-
struct two different macroscopic, discrete-time dynamics,
each defined by a separate master equation for the order-
parameter distribution function. Both master equations
are subject to the following two restrictions.

(1) The order parameter m is allowed to change only
by a finite amount during each discrete time step (locality
in m).

(2) The dynamics should reproduce the correct F(m)
in equilibrium [correct static properties of F'(m)].

Although the relevance to metastable decay of the
Hohenberg-Halperin scheme of dynamic universality
classes [21] is not completely clear, we demonstrate in
this work that the requirements (1) and (2) are sufficient
to make our macroscopic dynamics consistent with micro-
scopic dynamics in the class of Model A: systems with a
nonconserved scalar order parameter and local dynamic.

For short-range-force models, the sequence of micro-
scopic configurations that constitutes a particular real-
ization of a MC simulation cannot be deduced from the
corresponding sequence of values of macroscopic vari-
ables. In contrast, for models in which each site interacts
equally with all other sites while the total interaction en-
ergy remains independent of the system size (equivalent-
neighbor models), all configurations with identical values
of the order parameter are equivalent, so the dynamical
properties can be exactly obtained from the restricted
free energy, as has been shown by Griffiths et al. [22].
In the equivalent-neighbor limit, one of the macroscopic
dynamics that we propose in this work reduces to the
Metropolis [23] version of the heat-bath dynamic stud-

ied in Ref. [22]. (For discussions of the distinctions be-
tween Metropolis and heat-bath or Glauber dynamics,
see, e.g., Refs. [1,24].) Since it is well known that both the
equilibrium and the metastable properties of equivalent-
neighbor models are exactly described by mean-field the-
ory in the thermodynamic limit [2,13-15], these models
are often referred to as “mean-field models” [22]. Consis-
tent with this usage, we call the class of dynamics that
we define here “macroscopic mean-ficld dynamics.”

Our proposed dynamics may be considered as approx-
imations to the dynamic one would obtain by project-
ing the microscopic dynamic onto a master equation for
the macroscopic order-parameter distribution [3], using
a projection-operator technique [25-30]. This point of
view is further explored in Appendix A. Since the de-
cay of metastable phases is a nonlinear, nonequilibrium
problem, it is worth considering the extent to which
nonlinearities and correlations in the microscopic dy-
namic are included in the proposed macroscopic dynam-
ics. We, therefore, point out that although specifically
nonequilibrium correlations are not included by virtue of
the loss of spatial resolution resulting from the projec-
tion of the dynamic onto the macroscopic order param-
eter, equilibrium correlations are included through their
effect on the highly nonlinear restricted free energy F(m).
However, since in this paper we only consider a single
macroscopic variable, effects of nonlinear interactions be-
tween macroscopic variables [29] are not included.

The rest of this paper is organized as follows. In Sec. II,
we introduce our two specific macroscopic mean-field dy-
namics, emphasizing their common physical motivation.
In Sec. III, we show how to obtain F(m) using MC sim-
ulations. In Sec. IV, we summarize the relevant droplet-
theory predictions for the decay of metastable phases. In
Sec. V, we apply our macroscopic dynamics to the relax-
ation of the metastable phase in the two-dimensional fer-
romagnetic nearest-neighbor Ising model below its criti-
cal temperature. In Sec. VI, we discuss the connections
between our results for the metastable lifetimes and the
detailed shape of F(m), with particular reference to ear-
lier work [3,18-20]. Finally, in Sec. VII, we summarize
our results and discuss some implications of this study.

II. MACROSCOPIC MEAN-FIELD DYNAMICS

To set the stage for our study, we first consider the mi-
croscopic Metropolis dynamic for a mean-field Ising ferro-
magnet in which each spin interacts with equal strength
with every other spin in the system. As was already
shown by Griffiths et al. [22], this exactly defines a macro-
scopic dynamic that depends on the configurations of
the system only through the restricted free energy F(m).
Next, for Ising models with finite interaction range, we
propose two macroscopic dynamics, which can be con-
structed from F(m) for the corresponding model while
satisfying the two conditions introduced in Sec. I: (1) lo-
cality in m and (2) correct static properties of F/(m). In
proposing these dynamics we make as few specific phys-
ical assumptions as possible beyond the conditions (1)
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and (2).
The ferromagnetic Ising model with equivalent-
neighbor interactions is defined by the Hamiltonian

H=—(J/N)> sis;—HY s, (2)
i<j i

where s;==1 are N Ising spins, H is an external mag-

netic field, and the sums 3, . and }°; run over all N

spins with 1<i<j<N and 1<i<N, respectively. For con-

venience we set the interaction constant J equal to 1.

The magnetization per spin,

m=N"1ZSi, (3)

is the order parameter conjugate to H, and the number
of up spins is related to m as

n=g(1+m). (4)

With these definitions, Eq. (2) can be written as [22]

(2n — N)2 B

H=Bn) = -

H(2n—N)+ 3. (5)

We consider a microscopic Metropolis dynamic in
which the spin at a randomly selected site ¢ is flipped
from s; — —s; with probability

p(z = z') = exp (min {0, 3 [E(z) — E(z)]}), (6)

where E(z) and E(z’) are the energies of the microscopic
spin configurations z={s;} and z’ before and after the
flip, respectively. The microscopic detailed-balance con-
dition is satisfied [24]. For this model, the one-step tran-
sition probabilities Wy(n,n') from states with order pa-
rameter n to states with n’ are [22]

Wl('n,, n+ 1)

- (1 _ 2) exp (min {0, 3[E(n) — E(n+1)]}), (7a)

N
Wi(n,n—1) = —;—exp(min{O,ﬁ[E(n) —E(n-11}),
(7b)
Wi(n,n)=1-Wi(n,n+1) — Wi(n,n—1). (7¢)

Here the arguments of the matrix elements Wy (n,n’) are
all between 0 and N, and matrix elements with argu-
ments outside this range are identically zero. In this dy-
namic the probability for choosing an up (down) spin is
n/N (1 —-n/N).

Since the value of n in the equivalent-neighbor model
uniquely specifies the energy of the spin configuration,
BE(n) can be replaced by F(n) + S(n), where F(n) is
the restricted free energy [F(n) = BE(n) — S(n) with 3
absorbed in F], and S(n) = lnQ(n) is the Boltzmann
entropy for the density of states Q(n) = N!/n!(N — n)!.

The probability that the system has n up spins is pro-
portional to exp[—F(n)] [31]. Equation (7) thus becomes

Wi(n,n+1) = (1 — %) exp (min{0, [F(n) — F(n + 1)

+S(n) — S(n+1)]}), (8a)

Wi(n,n—1) = % exp (min{0, [F(n) — F(n — 1)
+8(n) — S(n - 1)]}), (8b)

Wi(n,n) =1—-Wi(n,n+1) — Wi(n,n —1). (8¢)

Since exp[S(n) — S(n—1)] = (N —n+1)/n, it is straight-
forward to show that

Wi(n,n'
T = explF () — Pl ©)
which can be considered to be the macroscopic detailed-
balance condition between states with order parameter
n and n’=n+1. Consequently, the equilibrium proba-
bility distribution for the order parameter n resulting
from this Metropolis dynamic is correctly proportional
to exp[—F(n)].

Once the transition probability matrix Wi(n,n’),
which for IV Ising spins is an (N +1) x (N +1) tridiagonal
matrix, is constructed from F(n), particular realizations
of this stochastic process can be created, starting from an
arbitrary initial state. The average first-passage time ()
to the globally stable phase, starting from a metastable
phase, can be easily calculated from Wj(n,n') by the
methodology of absorbing Markov chains [32] (see Ap-
pendix B). Higher moments of the first-passage time 7
can also be obtained by the same method. We again
emphasize that for the equivalent-neighbor model, the
time evolution of the macroscopic order-parameter dis-
tribution given by Eq. (8) is an ezact consequence of the
underlying microscopic dynamic [22].

Next, as a prototype ferromagnet with short-range
interactions we investigate the nearest-neighbor square-
lattice Ising model for which the Hamiltonian is

H:_stisj_HZsi’ (10)

(3,3)

where s; = *+1 is the Ising spin at site . The interaction
constant J will be set to one as before, periodic boundary
conditions are used, and H is the applied field [33]. The
sums 3 ; » and }; run over all nearest-neighbor pairs

and over all N=L? sites on a square lattice. In contrast
to infinite-range models, for models with finite interac-
tion range, such as given by Eq. (10), Eq. (8) cannot be
exactly derived from the microscopic Metropolis dynamic
defined by Eq. (6), even if F(n) is numerically calculated
to give the correct functional form appropriate to the
particular model. The reason for this is that the local
environment with which a particular spin interacts is no
longer uniquely determined by the macroscopic order pa-
rameter. Nevertheless, we can define a macroscopic dy-
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namic for a particular short-range model through Eq. (8)
with the appropriate form for F(n) and consider it as
an approximation for the true order-parameter dynamic
observed in a microscopic MC simulation. This approx-
imate macroscopic dynamic is our “mean-field dynamic
No. 1” (MFD1). Although MFDL1 is not exactly derived
from any particular microscopic dynamic, it satisfies the
two conditions of locality in the order parameter m and
correct static properties of F'(m), which we introduced
in Sec. I.

We emphasize two important features of MFD1. First,
regardless of the functional form of F(m) for the par-
ticular microscopic model, this form is correctly re-
produced by the dynamic. Second, MFD1 is not the
only macroscopic dynamic capable of correctly yielding
F(m). This is analogous to the fact that there exist
many different microscopic dynamics that can be suc-
cessfully used to study the equilibrium properties of a
single model. In fact, the macroscopic detailed-balance
condition, Eq. (9), is sufficient to ensure that a dynamic
yields exp[—F(m)] as its equilibrium distribution. Per-
haps the simplest Metropolis-type dynamic that satisfies
both Eq. (9) and our requirement of locality in m is de-
fined by the transition-matrix elements,

Wi(n,n+ 1) = 1 exp[min{0, F(n) — F(n+1)}], (11a)
W2(n,n — 1) = } expmin{0, F(n) — F(n —1)}], (11b)
Wa(n,n) =1—Wa(n,n+1) — Wa(n,n—1), (11¢)

where the range of the arguments is the same as for Wy,
and Wy=0 for out-of-range arguments. These transi-
tion probabilities define our “mean-field dynamic No. 2”
(MFD2).

In Sec. V, we compare the macroscopic order-
parameter dynamic observed in MC simulations of the
two-dimensional Ising ferromagnet with the microscopic
Metropolis dynamic defined by Eq. (6) to our approx-
imate macroscopic dynamics, MFD1 and MFD2. This
allows us to investigate the relevance of the equilibrium
properties of a system to the dynamical relaxation be-
havior of its metastable phases.

III. RESTRICTED FREE ENERGY BY MONTE
CARLO SIMULATIONS

In this section, we describe how to obtain, from micro-
scopic, equilibrium MC simulations, the bulk restricted
free energy F'(m), which is defined through the restricted
partition function

exp[—F(m)] = Z&(m(z) — m) exp[—BE(z)], (12)

where the sum is over all possible microscopic spin con-
figurations z, and § is the Kronecker § function. It is
straightforward to show that the probability distribution
for m is proportional to exp[—F(m)] [31]. For Ising mod-

els with short-range interactions below the critical tem-
perature T, Fo(m) [i.e., F(m) for H=0, as defined in
Eq. (1)] has two symmetrical minima, and the bulk free-
energy barrier separating these minima diverges as the
linear system size L for L>>1 in two dimensions (as L¢!
in d dimensions) [3,31].

Recently, significant progress has been achieved in the
search for more efficient MC sampling algorithms for sys-
tems in which different subsets of phase space are sepa-
rated by large free-energy barriers [3,34—-41]. Here we use
a variation of the multicanonical method [38-40], employ-
ing the notation of Ref. [41].

The partition function for H=0 and inverse tempera-
ture 3 is

Z(,H =0) = ) exp[S(E, M) — BE]
E,M

=" exp[-Fo(M)], (13)
M

where

exp[—Fo(M)] = > exp[S(E, M) — BE] (14)
E
exp[S(E, M)]|=Q(E,M) is the density of states, and F
and M=mL? are the bulk internal energy and magneti-
zation, respectively.
The detailed-balance condition for the MC simulation
can be written as

Wz —z') '
m = exp [—-,3 {E(z") — E(x)}
— {J(M(m')) - f(M(w))}] o (19)

where J can be any arbitrary function of M. For an
ergodic MC algorithm, the resulting distribution (his-
togram) of the sampling has been shown [41] to be

H(E,M) x exp[S(E,M) — BE — J(M)] . (16)
From Egs. (14) and (16) we get

H(M) =" H(E,M) o« exp[Fo(M) — J(M)] . (17)
E

Therefore,
Fo(M) = J(M) + In H(M) (18)

up to an additive constant.

As in Ref. [41], the quantity Fo(M) can be obtained
using Eq. (18) in an iterative fashion. The old estimates
of Fo(M) and J(M) can be used in a MC procedure to
obtain a new histogram and, consequently, a new and
better estimate for Fo(M) from Eq. (18). Although this
approach is more efficient than conventional sampling
methods [40], we find that it does not suffice to obtain
Fo(M) at very low temperatures. This is due to the large
size of the exponent in Eq. (15) for large 3.
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As in Ref. [41], we instead sample the Boltzmann en-
tropy S(E, M) directly by imposing the detailed-balance
condition

Wz —z') F(E(x o)) — J(E(z' z
Wia 5 2) = P [J(B@), M(@) - J(B@), M@))]
(19)
which yields the histogram
H(E,M) x exp|S(E, M) — J(E,M)] . (20)

Therefore, S(E, M) can be obtained, up to an additive
constant, by iteratively evaluating

S(E,M) = J(E,M) +InH(E, M) (21)

where J(E,M) is an input and H(E, M) is the result-
ing histogram of J(E, M) from Eq. (19). Once S(E, M)
has been obtained to the desired accuracy, Fo(M) can be
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FIG. 1. (a) The zero-field bulk restricted free energy,
Fo(m), of the nearest-neighbor Ising ferromagnet on a square
lattice at T=0.8T.=1.8153... for L=24. (b) Same as (a), but
at T=0.2~0.0881T.. Notice the difference in the scales along
the y axis in (a) and (b). The sawtoothlike behavior of Fo(m)
at T'=0.2 is due to the discreteness of the lattice. The vertical
arrows marked m,. indicate the exactly known magnetization
for which the most likely configuration with the given magne-
tization changes from a slab (for |m| < m.) to a droplet (for
|m| > m.) in an infinite system [42].

obtained from Eq. (14) for any 3. We were able to ob-
tain Fo(M) for any 3>0. for the nearest-neighbor Ising
ferromagnet on Lx L square lattices with L<24. The H-
dependent F'(m) are trivially constructed from Fy(m) by
Eq. (1).

In Fig. 1 we show Fo(m) for T=0.8T. =~ 1.8153
[Fig. 1(a)] and for T=0.2 ~ 0.08817, [Fig. 1(b)]. The
sawtoothlike behavior of Fy(m) for T=0.2 is due to the
discreteness of the lattice. For 7=0.87,, we used Eq. (15)
to obtain Fg(m) for lattices up to L=64. The vertical
arrows marked m. indicate the exactly known magneti-
zation for which the most likely configuration with the
given magnetization changes from a slab (for |m| < m,)
to a droplet (for |m| > m.) in an infinite system [42].
In Fig. 1(a), we have also marked the value of m, cor-
responding to L=24, taken from Fig. 3 of Ref. [42]. For
further discussion of the droplet-to-slab transition and its
significance, see Sec. VI.

IV. DROPLET THEORY AND ITS
PREDICTIONS

In this section, we review some predictions of droplet
theory for the metastable lifetime (7) in d-dimensional
ferromagnetic systems with short-range interactions and
local dynamics [33]. We leave details of the theory to
Refs. [1,5] and the references cited there. Starting with
a large magnetization opposite to the applied field, we
consider its relaxation and define () as the average time
it takes for m(t) to reach a particular cutoff value, mcys.

In addition to the lattice constant, which we take as
unity, five length scales are important in the droplet the-
ory for relaxation of metastable phases. These are the
linear system size L, the radius of the critical droplet
R, the average distance between supercritical droplets
Ry, and the single-phase correlation lengths in the stable
and metastable phases, {; and &, respectively. Since
the temperatures of interest in the present study are well
below T., & is practically field independent and of the
order of unity, and since the field strengths considered
are moderate, the same is the case for £, [12]. Thus we
are left to consider the interplay between three lengths:
L, Rg, and R., all of which are larger than unity in the
temperature and field regimes of interest.

By comparing the bulk free energy gained by creating a
droplet of the equilibrium phase in the metastable back-
ground with the free-energy cost of creating the droplet
surface, one can show that the critical radius, beyond
which the droplet is more likely to grow than to shrink,
is

_ ([@-1)oo(T) _ (d—1)oo(T)

RC ~ k)
Am|H| 2meq(T)|H|

(22)

where Am is the magnetization difference between the
metastable and the stable phase, and meq(T) is the
spontaneous equilibrium magnetization. Also, oo(7T) is
the equilibrium surface tension along a primitive lattice
vector, and is assumed to be equal to the surface ten-
sion in the metastable phase. For the two-dimensional
Ising model, both 0o(T') [43] and m.q(T) [44] are exactly
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known. The relaxation proceeds in different ways, de-
pending on the relative sizes of L, Ry, and R..

If |H| is sufficiently small that R.>L, then the saddle-
point configuration is a slab spanning the system in d—1
dimensions, and L is the most important length scale for
the relaxation. The metastable lifetime is then deter-
mined by the surface free energy of such a slab. Con-
sequently, for periodic boundary conditions it increases
with L as [45-47]

(r(T,H,L)) ~ exp [2B00o(T)L*"] . (23)

This region of ultraweak fields is called the “coexistence”
(CE) region [5], since the dynamic is similar to that at
H=0, where two competing bulk phases coexist.

As |H| is increased, R, becomes smaller than L. The
crossover to the field regimes where the relaxation is
dominated by critical droplets smaller than L has been
called the “thermodynamic spinodal” (THSP) [4]. The
crossover field Hrysp can be estimated by requiring that
the critical droplet should occupy a volume fraction

m
¢ = (1— ) (24)
Meq(T)

corresponding to the cutoff magnetization mcy¢. This

yields [1,5]

1 [(d-1)2(T) "¢

= — |t 25
Hrusp(9) 7 [ 3meg(T)$ ) (25)

where Z(T) can be calculated from meq and the
anisotropic equilibrium surface tension by the equilib-
rium Wulff construction [43,48] to obtain the critical
droplet shape [11,12,49].

For fields somewhat stronger than Hrusp, so that
L>R.>1, the nucleation rate per unit volume for critical
droplets becomes [8-10,17]

[(T, H) o |H|**¢ exp [‘lg—i(_Tl—){HO(Hz)}] . (26)

The exponent b is a universal exponent related to exci-
tations on the droplet surface, and the nonuniversal ex-
ponent c gives the H dependence of a “kinetic prefactor”
[8-10] which contains all dependence on the details of
the dynamics. For d=2 and 3, it is expected that b=1
and —7/3, respectively [17]. This has been confirmed by
several methods, most recently by constrained-transfer-
matrix calculations [11,12]. For dynamics that can be
described by a Fokker-Planck equation, it is expected
that ¢=2 [9,10,17]. In a recent MC study for d=2, it was
confirmed that b+c=a3 for the Metropolis dynamic with
updates at randomly chosen sites [5].

If Ro>L>R,, a single critical droplet is sufficient for
macroscopic decay to occur before additional droplets nu-
cleate. This region is called the “single-droplet” (SD) re-
gion [5]. Assuming that the exact value of mcy is not
an important factor (see the discussion in Ref. [5]), the
average relaxation time (7) to ¢, can be written as

(r(T, H, L)) ~ [LT(T, H)] "
oc L4 H|~(+9)

X exp [ﬁigjz {1 + O(HZ)}} . (27)

This leads to

dn{r(T, H, L))

A(T,H) = dH|4

— A= bte d-1
(28)

where we have neglected higher-order correction terms.

If L>Ry>R., many critical droplets nucleate before
the decay of the order parameter can proceed to a macro-
scopic extent. This region is called the “multidroplet”
(MD) region [5]. In this region, we expect (7) to be in-
dependent of L. With the assumption that the radial
growth velocity of the supercritical droplets is propor-
tional to the applied field H [50-52], () is predicted to
be [5,53-57]

(r(T, H)) ~ |H|~ "5
X exp [(—d_—i——@;)%:_l {1 + O(HZ)}] , (29)

which leads to

b+c+d, 41
+ b e,

BE(T)
d+1

AT, H) = (30)

where higher-order corrections again have been ne-

glected. One also has the mean droplet distance [5,56,57]

btc—1

Ro(T, H) o [H|~ "%

BE(T)
X exp [(d+1)|Hld-1

The field Hpsp, which separates the SD and MD regions
was called the “dynamic spinodal field” in Refs. [4,5]. It
can be estimated by setting Ro(T, H)xL with a propor-
tionality constant of order unity, which gives the scaling
relation,

Hpsp = (((ii—Eji()zl-'x)l_L) “ [1 +0 (I_EI%H—LL—)>

1

+0 <ln L )

expected to be asymptotically valid for nonzero T'.
These droplet-theoretical results can be summarized as
follows. For a given system size L, if |H| is small enough
so that R.>L, then L is the most important length scale
for the relaxation, and the system is in the CE region. As
|H| is increased beyond Htusp, R. becomes smaller than
L. If Ro>L>R., the system is in the SD region, and the
relaxation is characterized by Eq. (28), from which one
can estimate b+c and Z(T). As |H| is increased still
further, so that R.<Ro< L, the system is in the MD re-

{1+0(H»)}| . (31)

: (32)
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gion. The relaxation is then characterized by Eq. (30),
from which one again can estimate b+c and Z(T'). The
crossover field that separates the SD and MD regions,
Hpsp, also separates the “stochastic region” and the “de-
terministic region” [4]. In the “deterministic” region, the
average metastable lifetime (7) is quite short, and the
standard deviation of 7 is much smaller than (7). In
the “stochastic” region, the decay approximately follows
a Poisson process, so that the standard deviation of 7
is comparable to (7). As |H| becomes very large, the
droplet picture becomes inappropriate, and Ry and R,
become comparable to the lattice spacing. The lifetime
is then on the order of one MC step per site (MCSS), and
this region is called the “strong-field” (SF) region. The
crossover between the MD and SF regions is marked by
the “mean-field spinodal field” Hmrsp [4], which can be
estimated as the field at which 2R.=1 [12]. In Fig. 2, we
show a schematic diagram for the relaxation behavior, il-
lustrating the four subregions of characteristic relaxation
behavior predicted by droplet theory.

For low temperatures, the discreteness of the lattice be-
comes important. It has been shown [58-63] that for suf-
ficiently low temperatures, the lifetime of the metastable

R>L | R@>L>R, L>R>>R, | RyR.~1
i | I
| i |
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FIG. 2. Schematic plot of A(H), defined in Eq. (28), for
a two-dimensional Ising ferromagnet. The dynamic spinodal
field Hpsp separates the stochastic and the deterministic re-
gions. In the stochastic region (|H|<Hpsp), the relaxation
time (7) is determined by the formation of a single critical
droplet. Depending on the size of the critical droplet relative
to the system size, the stochastic region is divided into the
single-droplet (SD) and coexistence (CE) subregions. In the
SD region the size of the critical droplet is smaller than the
system size. The CE region is also characterized by a single
nucleating droplet, but of a size comparable to the system
size. The thermodynamic spinodal field Hrusp separates the
SD and CE regions. The deterministic region (|H|>Hpsp)
is comprised of the multidroplet (MD) and strong-field (SF)
regions. These two regions are separated by the mean-field
spinodal (MFSP). Droplet theory [5] predicts that the inter-
cepts of the two straight lines are BZ and BZ/3. Their slopes
are related as shown in the figure if one assumes that the
radial growth velocity of the supercritical droplets is propor-
tional to H.

phase for the nearest-neighbor square-lattice Ising ferro-
magnet with Hamiltonian given by Eq. (10) is given by

In(L?7) = 8Bl — 2B|H|(12 - l. + 1) , (33)

where the size of the critical droplet is I, = [2/|H|] and
the notation [z] denotes the smallest integer greater than
z. This result is restricted to 2/|H| not being an integer
and to |H| < 4. For this result to be valid the temper-
ature must be at least low enough and the lattice size
large enough to insure that the system is in the SD re-
gion. Differentiating Eq. (33) with respect to |H| ™! gives

TA =2H?*(12 -1.+1). (34)

V. NUMERICAL RESULTS

In this section, we present extensive results of the
mean-field dynamics introduced in Sec. II for the relax-
ation behavior of the metastable phase in the nearest-
neighbor Ising ferromagnet on a square lattice with the
Hamiltonian given in Eq. (10). Periodic boundary con-
ditions are used throughout.

First, we consider T=0.8T, (3=0.55086...) for direct
comparison with recent MC results [5]. We obtained
Fo(m) for the entire range of —1 < m < +1 for sys-
tem sizes up to 64x64, using the method outlined in
Sec. IV and utilizing the Ising spin-reversal symmetry
Fo(m) = Fo(—m). For H # 0, F(m) was obtained from
Eq. (1). Once F(m) was obtained, the Markov transition
probability matrices W; and W, for the two dynamics
MFD1 and MFD2 were constructed through the proce-
dure outlined in Sec. II. We show the results from MFD1
first and discuss MFD2 later. As in Ref. [5], the initial
state is chosen as m=+1 with H<0, and an absorbing
barrier is put at mcu,=0. In Ref. [5], different values of
Meut Were also used. As long as my is sufficiently far
away from the metastable value of m that the largest
droplet must already be supercritical, the precise value
of mcy is not important for weak fields [5].

Using the absorbing Markov chain method discussed
in Appendix B, the average first-passage time (7) to
M=y and the standard deviation o,=./(12) — (7)2
were obtained by matrix inversion using the computer
subroutine TRIDAG from Ref. [64]. Our values of T were
divided by L? to give all times in units of MCSS.

In Fig. 3, we show the relaxation time, defined as
the first-passage time to mc,=0, obtained from MFD1
for L=32 and 64. For comparison, MC results for the
standard Metropolis algorithm with spin updates at ran-
domly chosen sites for L=32 and 64 are also plotted. We
find that MFD1 and the microscopic MC simulations give
qualitatively similar results for the relaxation time.

In Fig. 4, we show the slope A of the data in Fig. 3 with
respect to |H| ™1, whose asymptotic values in the SD and
MD regions are given in Egs. (28) and (30), respectively.
We clearly see four distinct relaxation regions for L=64.
The SF region, IHl > Hmrsp (HMFSP(O.STC)QJO.75 [12]),
contains the sharp peak for very small |H|~! in Fig. 4(b).
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FIG. 3. The field dependence of the average metastable
lifetime (7) for a two-dimensional Ising model at T=0.87..
The lifetime (7) is estimated as the average first-passage
time to Mmcute=0 from the starting configuration m=+1 with
H<0. The lines correspond to the MFD1 dynamic for L=32
(dashed) and 64 (solid). The results of Metropolis MC simula-
tions with random site updates for L=32 and 64 are marked
by + and x, with 10 escapes from the m=+1 state. The
statistical errors are smaller than the symbol size.

[Figure 4(a) is analogous with the schematic Fig. 2, in
which the various field regions and crossover fields are
indicated.] The region 0.25|H|<0.75 corresponds to the
MD region. As |H| is lowered, the crossover from the
MD region to the SD region is signaled by a sudden rise
in A. In Fig. 4(a), we define Hmax and Hpmin as the
fields at which A has a local maximum and minimum,
respectively. As |H| is lowered further, A plunges to-
wards zero, signaling the CE region. From our numer-
ical data for MFD1 we find this crossover field Hrygsp
at about |H|™! = 40 for L=64 and |[H|™! = 20 for
L=32. [See Fig. 4(b).] This is consistent with the re-
lation Hygsp o L~! given in Sec. III. For further dis-
cussion of the thermodynamic spinodal and its relation
to the droplet-to-slab transition, see Sec. VI.

Using the numerically exact value [43,48] of E, we find
our results consistent with b+c~2 for MFD1, based on
the data in the SD region. The expected value for dy-
namics that can be described by a Fokker-Planck equa-
tion is b+c=3. The estimate b+c=2 for MFD1 at 0.87,
should be taken with extreme caution, since the asymp-
totic region for L=64 appears to be quite small. For a
more reliable estimate, we would need results from larger
systems at this temperature. Since we have difficulties in
obtaining F'(m) for larger system sizes, we instead tested
Eq. (28) at lower temperatures, assuming that b+c does
not depend on the temperature. Although the accessible
system sizes are smaller for lower temperatures, due to
the difficulties in estimating S(E, M) for all values of E
and M, this approach turns out to be a more reliable
way with our dynamics to estimate b+c. These studies
at lower T are also consistent with b+c~2, as discussed
below.

Although the results from the mean-field dynamic are
in good overall agreement with those from the MC sim-
ulations, the quantitative estimates of the intercept and

the slope in Fig. 4(a) are less satisfactory for the MD
region. Since the asymptotic region, in which Eq. (30)
is valid for MC simulations at 0.87., has been shown
to be relatively narrow, even for L=720 [5], results for
much larger system sizes than L=64 woild be necessary
to provide a satisfactory test of Eq. (30) for the mean-
field dynamics at this temperature. At lower temper-
atures we are nevertheless able to estimate below that
b+c~2 for MFD1 in the SD region, and this gives the
slopes drawn in Fig. 4(a) for both regions. In contrast,
it was demonstrated in Ref. [5] for systems with L <720
that Metropolis MC simulations with spin updates at
randomly selected sites give b+c~3, in agreement with
theoretical expectations [9,10,17]. The apparent consis-
tency with b+c~2 of the Metropolis MC results for L=64,
which are also shown in Fig. 4(a), is, therefore, clearly
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T=0.8T,

X L=64(MC)
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L=64(MFD1)
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FIG. 4. (a) The slope A(H), obtained from the data in
Fig. 3, shown as a function of |H|. The thick solid curve is
from MFD1 for L=64, and the symbols are from the stan-
dard Metropolis MC simulations with random site updates
for L=64. The two straight lines are drawn with slopes
b+c=2 and (b+c + 2)/3= 4/3, using the exact value [43,48]
of BE(0.8T.) = 0.5062.... The horizontal arrows mark the
exact values of 35(0.8T.) and BZ(0.8T.)/3. The asymptotic
SD subregion seems to be very small for L=64. The SF subre-
gion (|H|>2), where A(H) decreases to zero is not shown. We
define Hmax and Hmin as the fields at which A has a local max-
imum and minimum, respectively. (b) The slope A(H), shown
as a function of |[H|™'. The two horizontal lines correspond
to the exact values of SZ and BZ/3. The interpretations of
the other lines and symbols are the same as in (a).
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due to finite-size effects.

In Fig. 5, we show the field dependence of the slope
A obtained from MFD1 and MFD2 at T=0.87.. Both
are in qualitative agreement with Fig. 2. The SF region,
where A decreases to zero for large |H|, is not shown.
Figure 5 provides some insight about the relevance of
F(m) and the possible artificial results from the mean-
field dynamics. The fact that Fig. 5 is in qualitative
agreement with Fig. 2 indicates the importance of F'(m)
for the dynamics. However, as one might expect from the
sensitive dependence of the kinetic-prefactor exponent ¢
on the details of the dynamic, which was demonstrated
in Ref. [5], values of b+c obtained from mean-field dy-
namics do not correctly reflect that of the underlying
microscopic dynamic. In the SD region, A approaches
the exact value = with a slope that depends on the de-
tails of the particular dynamic. For MFD1 and MFD?2,
b+c is about 2.0 and 3.7, respectively. In the MD re-
gion for both MFD1 and MFD2, we find only qualitative
agreement with droplet-theory predictions. As will be
explained in Sec. VI, it is expected that only in the SD
region can quantities related to the metastable phase be
reliably extracted from F(m). In the MD region, A de-
pends strongly on the details of the particular dynamic,
and the dynamics associated with the droplet growth is
not taken into account correctly in F'(m). Note that the
MD region is fairly easily accessible by standard MC sim-
ulations, since 7 there is rather small.

In Fig. 6, we show the field dependence of the relative
standard deviation of the lifetime,

r=o./(r) (35)

which provides additional information about how the
metastable phase decays. If the decay of the metasta-
bility involves a single Poisson process of forming one
critical droplet, as is the case in the SD region, we ex-

p=s3
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FIG. 5. The field dependence at T=0.8T of A(H) for the
two different mean-field dynamics, MFD1 and MFD2. Quali-
tatively similar behavior is observed for both dynamics. Using
the exact value of 3=, we estimate in the SD region b+c~:2.0
and 3.7 for MFD1 and MFD2, respectively. In the MD region,
the lifetimes for MFD2 are shorter than for MFD1. Even
though the system size is too small to discuss the asymptotic
behavior in the MD region, the results from MFD1 and MFD2
are not in good agreement with droplet theory in this region.
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FIG. 6. The field dependence of the relative standard devi-
ation =0, /(1) at T=0.8T.. The curves are from MFD1 for
L=24, 32, and 64. The symbols are from the Metropolis MC
simulations with random site updates for L=32 and 64. The
MC data are from 3000 escapes from the metastable state
near r~1/2, and at least 100 escapes from the metastable
state for the other H values.

pect r~1. In the MD region, on the other hand, one
needs to consider many independent Poisson processes.
By partitioning the system into (L/Rg)%>>1 cells of vol-
ume proportional to R2, one gets r oc Ry/L, where Ry
is given by Eq. (31) [5,65]. A more rigorous argument,
based on the two-point correlation function [57], can be
found in the appendix of Ref. [65]. An estimate for the
crossover field Hpsp between the SD and MD regions can
be chosen as the field H;/,, for which r=1/2 [4,5]. For
further discussion of the dynamic spinodal in mean-field
dynamics, see Sec. VI.

In Fig. 7(a), we show the temperature dependence of
H,; for L=24. The MC values lie between the estimates
from MFD1 and MFD2. Again we considered the stan-
dard Metropolis dynamic with spin updates at randomly
chosen sites. The MC simulations in this case were accel-
erated by using the method of absorbing Markov chains.
This new MC method [6] generalizes the n-fold way al-
gorithm [66,67] and gives large CPU-time savings for low
temperatures without changing the underlying dynamics.

Analytic estimates for Hpgsp at low temperatures can
be obtained as follows. For sufficiently low temperatures,
there exists a field 2<|H|<4 such that a single overturned
spin is a supercritical droplet [58-63]. We define 7; as
the average time before a single overturned spin appears.
Further, we define 7, as the average first-passage time
from the state with a single overturned spin to the ab-
sorbing state with magnetization mcu;=0. For 2<|H|< 4
and low temperatures, the processes that determine 7o
are deterministic, and for both MFD1 and MFD2, 75 is of
order unity. Using the free-energy difference between the
state with a single overturned spin and the metastable
state with no overturned spins, 28|H| — 83 + In N, one
can obtain 7; for MFD1 and MFD2 from Egs. (8) and
(11), respectively. We get 71 ox exp(83 — 26|H| — In N)
for MFD1 and 7, « exp(88 — 23|H| — 21n N) for MFD2.
Note that we here give 71 in units of MCSS and that
N=L?. The waiting time 7; can be either large com-
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pared to 73, corresponding to stochastic decay, or small,
corresponding to deterministic decay. Therefore, the es-
timate for Hpsp can be obtained by setting 7; to be of
the same order of magnitude as 72, which leads to

T(InL + ¢;) for MFD1
T(2InL +cp) for MFD2 ,

(36a)

4 - Hosp = { (36b)

where ¢; and ¢, are nonuniversal constants. For MC sim-
ulations, 71 « exp(88—20|H|—1n N) as for MFD1. Sim-
ulations in which the update sites are chosen sequentially
give 12 on the order of unity, so that Hpgp is given by
Eq. (36a) for these microscopic dynamics as well. When
updates are performed at randomly chosen sites, how-
ever, T, increases with L. The radial growth velocity v
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FIG. 7. (a) The temperature dependence of the estimate
for the dynamical spinodal field Hpsp, given by H,,; for
L=24. Note that the MC simulation results (Metropolis with
updates at randomly selected sites, MR) fall between the
MFD1 and MFD2 results. The estimates approach H=4 lin-
early in T with negative slopes, which depend on the system
size L and a nonuniversal constant. The slopes of the straight
lines are 5.7, 4.0, and 3.0. (b) The asymptotic slopes near the
point (T, Hy;/2)=(0,4) as functions of L. We also show the
MC results from the microscopic Metropolis algorithms with
sequential (MS) and random (MR) spin updates. For com-
parison we show straight lines with the predicted slopes (2,
1.5, and 1 from top to bottom), obtained from the analytic
low-temperature estimates for Hpsp in Eq. (36).

is independent of L and H for 2<|H|< 4 and T<K1, so
that v = O(L), and 71 = 73 then gives

4_HDSP =T(%IDL+03) . (360)
In Fig. 7, we compare these analytic low-temperature es-
timates for Hpsp with H;,; as obtained both from our
mean-field dynamics and from microscopic MC simula-
tions. Excellent agreement for the linear T' dependence
is demonstrated in Fig. 7(a) and for the logarithmic L
dependence in Fig. 7(b).

In Fig. 8, we show the field dependence of the slope
A for L=24 as a function of |H| for T=1.0, 1.1, and 1.2
in the SD region. (Note that T.=2.269....) We observe
that, as expected, the size of the asymptotic SD region
increases significantly as T is lowered. The size of the
MD subregion, which is not shown, is very compressed
for these low temperatures, since the entropic factor is
much less important in F(m). From Fig. 8 we confirm
that b4+¢=2.0(1) for MFD1 and b+¢=3.7(2) for MFD2.
To obtain these estimates of b+c and 8=, we performed
least-squares fits to Eq. (30) considering only data points
in the asymptotic SD region in the following way. We
first discarded data in the CE region. We then estimated
the slopes and the intercepts as we successively removed
data points from the strong-field end of the |H| interval.
Since the asymptotic region for Eq. (30) corresponds to
Hrusp<|H|<K1, our estimates for the slopes and the in-
tercepts approached constant values with small fluctua-
tions as we removed data points. Due to the uncertainty
in S(E,M), it is not easy to obtain a systematic error
analysis. We, therefore, estimated the errors from the
fluctuations of the estimates in the asymptotic region.
The resulting estimates for SE from MFD1 are slightly
different from those of MFD2, as shown in Fig. 8. The fi-
nal error bars in our estimates for 8Z include this effect.
Our estimates for BE, 4.95(2), 4.00(1), and 3.20(2) for
T=1.0, 1.1, and 1.2, respectively, are within 1% of the
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FIG. 8. The field dependence of the slope A(H) for L=24
and T=1.0, 1.1, and 1.2. The size of the asymptotic SD re-
gion increases as T' is lowered. We estimate b+c = 2.0(1) and
3.7(2) for MFD1 and MFD2, respectively. The differences
between the average values of 8= for MFD1 and MFD2 and
the exact value of BZ [43,48] are less than 1%. Arrows indi-
cate the exact values of BE and the lines are from the fitted
asymptotic behavior of A(H) in the SD region.
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exact values [43,48] 4.942, 4.004, and 3.217, respectively.

Since the nucleation rate for a single droplet is indepen-
dent of the system size, the average metastable lifetime
in the SD region should be proportional to L=2, as indi-
cated by Eq. (27). We checked this result at T'=1.0 and
|H|~1=2.47 by fitting the lifetime to the form (T)ocL™*
for L=12, 14, 16, 20, and 24 (in the SD region for all
the values of L used). From this we obtained a=2.08(3),
in reasonable agreement with the theoretical result. At
higher temperatures the agreement is less convincing, so
that at 0.87, we found a~3 for the same values of L.
However, we believe this is a finite-size effect that be-
comes more pronounced at higher temperatures.

It is also possible to construct mean-field dynamics
that interpolate smoothly between MFD1 and MFD2. In
analogy to Egs. (8) and (11) the transition probabilities
of such a dynamic can be written as

Wy(n,n+1)=A (1 — —]%)7exp (min {0, {F(n)
~F(n+1) +4[S(n) - S(n+ 1)]}}),

(37a)

W, (n,n—1) = A (ﬁ)vexp (min {0, {F(n) — F(n — 1)

N
+7[S(n) = S(n—1)1}}), (37b)
(37¢)

Wy(n,n)=1—-Wy(n,n+1) - Wy(n,n—-1).

The positive constant A only needs to fulfill the require-
ment that W,(n,n) > 0 for all n, and it is otherwise
unimportant since it only redefines the overall time scale
of the process. In principle, the only restriction on ~y
should be 4> 0. For y=1 and A=1 the process reduces
to MFD1, while for y=0 and A=1/2 it reduces to MFD2.
Since both the prefactors b+c in the SD region and the L
dependence for the low-temperature strong-field behavior
of Hpgp are different for MFD1 and MFD2, it is expected
that they both change continuously with . Thus it may
be possible to tailor a mean-field dynamic to give the
desired prefactor and Hpgp dependence to match a par-
ticular microscopic dynamic. For MC simulations with
sites selected sequentially, MFD1 has the desired values
of these two quantities. If y=1/2, then the T depen-
dence of Hpgp will be given by Eq. (36c), which agrees
with MC simulations with randomly selected sites. The
mean-field dynamic with y=1/2 might also be expected
to give a prefactor closer to the value for MC simula-
tions with randomly selected sites, b+c=3 [5], since this
lies between the values we have obtained for MFD1 and
MFD2.

In Fig. 9, we show TA for the very low temperatures
T=0.4, 0.2, and 0.1. Discrete-droplet results for low T
[58-63] are shown as a set of parabolic arcs given by
Eq. (34). For T=0.4 we observe clear oscillatory behavior
with |H|, even though quantitative agreement with the
discrete-droplet limit has not set in yet. For 7=0.2 and
0.1 we observe increasingly good quantitative agreement
between the MFD1 results and the discrete-droplet limit.
For T=0.4, (7) is on the order of 107 and 10%¢ for |H|=1.0
and |H|=0.3, respectively, as obtained from MFD1 with
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FIG. 9. (a) The field dependence of TA(H) for MFD1 at
T=0.4. The discrete-droplet [58—63] result is shown as a set
of parabolic arcs. The exact value of = [43,48] is indicated by
the horizontal arrow. Simulation results for L=24 [6] from the
Metropolis algorithm with spin updates at randomly chosen
sites and 10° escapes from the initial state are also shown.
The two vertical arrows indicate the estimates of H,/; from
MC simulation (left) and MFD1 (right). (b) Same as (a)
at T'=0.2. The results from the MC simulations and MFD1
agree quite well with the discrete-droplet [58-63] result. (c)
Same as (a) at T=0.1. The agreement between the three sets
of results is close. Here the relaxation time (7) from MFD1
with mcue=0 is on the order of 10%° and 10'?® at |H|=1.0 and
0.3, respectively. The MC estimate for () is on the order of
103! at |H|=1.35.
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Meut=0. The corresponding numbers for T'=0.2 (0.1) are
108 (10%%) and 1059 (10123).

MC results by one of us [6] provide corroboration for
the MFD1 results. This oscillatory behavior with |H]| is
due to the corrugation of the free energy near the saddle
point, illustrated in Fig. 1(b). This corrugation is due to
the discreteness of the lattice.

VI. RELATIONS TO EARLIER WORK

The relationships of the detailed shape of F'(m) to
two-phase equilibria and nucleation barriers in finite sys-
tems have previously been studied by Schulman [3] and
by Binder and co-workers [18-20]. Since F(m) can be
viewed as a potential for the stochastic processes that
define our macroscopic dynamics [3], it might have been
expected that those studies would have also revealed two
L-dependent spinodals with the same scaling behaviors
as Hrusp and Hpsp. However, Furukawa and Binder
instead reported a single spinodal at a field proportional
to L1 [19].

To clarify the relation between our results and those of
these earlier studies, we follow Refs. [3,19] by calculating

day—19Fo(m)

h(m) = (B4 Eo ) (38)
This quantity has the dimension of a field and is the
equivalent, for an Ising model in the fixed-m ensemble,
of the expectation value of the chemical potential for a
lattice gas in the fixed-density ensemble [19]. In Fig. 10
we show h(m) for L=24, 32, 64, and 96 at 0.8T [68]. (For
L=96 the simulation was only performed for |m|>0.63.)
From Eqgs. (1) and (38) it is seen that

dF(m)

= = BLA [h(m) — H] .

(39)

Thus the extrema of the field-dependent F'(m) occur
-where the applied field H equals h(m). For a negative H
between zero and the minimum of k(m), there are three
such extrema: the stable minimum at ma—meq(T), the
metastable minimum at m=+meq(T), and an unstable
maximum at some m between 0 and m,,, the magneti-
zation corresponding to the minimum of h(m). If dy-
namically relevant information for nonzero H is to be
deducible from the functional form of F'(m), this must
mean that the spatial configuration characteristic of the
nonequilibrium saddle point of the relaxing system is
well approximated by the equilibrium configuration corre-
sponding to the same value of m in the fixed-m ensemble.
It is not unreasonable to expect that this should hold, at
least for sufficiently large systems, where the correspond-
ing applied H is weak.

Following the reasoning outlined above, we start by
considering the thermodynamic spinodal. The droplet-
theoretical arguments in Sec. IV indicate that the THSP
should be located in the field range where R, becomes
on the order of L, so that the droplet must compete with

slab configurations to become the “true” saddle point.
It has been shown by Leung and Zia [42] that for Ising
models with periodic boundary conditions in the fixed-m
ensemble, a first-order phase transition between the equi-
librium droplet and slab configurations occurs at a tem-
perature dependent magnetization, m.(T). For |m|<m,
the equilibrium configuration is a slab. The volume frac-
tion corresponding to m.(T) in the limit L — oo, which
was obtained in Ref. [42], can be written as [49]
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FIG. 10. The quantity h(m), defined in Eq. (38), shown vs
magnetization m at T=0.8T.. The large x marks the spon-
taneous zero-field magnetization at this temperature. For de-
tailed discussion, see Sec. VI. The vertical, dashed line in
both panels marks m., corresponding to the droplet-to-slab
transition in the limit L — oo, and the vertical arrows mark
m, for the three smallest L studied (from left to right). (a)
Shows h(m), highlighting the developing step discontinuity
near m., related to the thermodynamic spinodal, and the
narrow minimum near Mmsp, related to the dynamic spinodal.
From bottom to top the system sizes are L=24, 32, 64, and
96 (the latter only for m>0.63). (b) Shows L h(m), high-
lighting the L™' scaling behavior of h(m) in the SD region
between m. and m.p, as well as the much slower vanishing
of the minimum value, h(ms). The horizontal, dashed line
corresponds to L Hrusp from Eq. (41), and the dotted curve
is the asymptotic single-droplet result for L h(m) obtained by

applying Eq. (38) to Fo(l) from Eq. (42a).
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The vertical, dashed lines in Fig. 10 mark m.(0.8T¢). If
one ignores entropy effects due to the center-of-mass posi-
tions of the droplet and slab, as well as capillary waves on
their surfaces (which are responsible for the |H|® power-
law prefactor in the nucleation rate [17]), the finite-size
displacement of m, is proportional to L~ [42]. The ver-
tical arrows in Fig. 10 indicate the corresponding values
of m. for L=24, 32, and 64, as obtained from Fig. 3
of Ref. [42]. These values monotonically approach the
infinite-L limit for m.. From Fig. 10(a) it appears that
the shape of h(m) evolves towards a step discontinuity
as L increases. From the data collapse in the plots of
Lh(m) in Fig. 10(b), it is seen that the magnitude of
this discontinuity is proportional to L~! and so corre-
sponds to a finite discontinuity in a first derivative of the
free energy per unit interface area, L~ (4= Fy(m), in the
fixed-m ensemble. This is consistent with the identifica-
tion of the droplet-to-slab transformation as a first-order
phase transition [42].

Using ¢.(T") from Eq. (40) in Eq. (25) for Hrusp(¢),
we obtain an estimate for Hrusp as the field at which the
free energies of the critical droplet and a system-spanning
slab are degenerate:

Hyusp = Hrusp(¢c) = % (;fogg) - . (41)

The horizontal, dashed line in Fig. 10(b) represents this
estimate of L Hyrysp. It corresponds excellently to the
magnitude of the incipient step discontinuity in L h(m).
The L dependence of Hrysp at 0.8T'¢c is shown in Fig. 11,
together with the results of MFD1 for L=32 and 64. The
MFD1 points were estimated as the smallest fields for
which A(T, H)=BZ(T) (see Fig. 4). The agreement is
good and we believe the small discrepancy is a finite-size
effect.

The narrow minimum in h(m), which occurs at an L-
dependent magnetization mgp(L), slightly smaller than
the equilibrium magnetization meq, signifies the inflec-
tion point in Fo(m). This magnetization also corresponds
to a change in the equilibrium configuration: the sys-
tem is uniform closer to meq, whereas closer to m. a sin-
gle droplet of the opposite magnetization is precipitated
[3,19]. The volume fraction occupied by this droplet is
given by the lever rule. As seen from Fig. 10(b), the
minimum value of h(m), h(msp), does not vanish as L1,

It is tempting to identify the disappearance of the
single-droplet saddle point, which occurs at h(msp), with
the dynamic spinodal, Hpgp. For all the system sizes
studied here, we find that |h(msp)| indeed lies close
to other estimates for Hpsp, such as H,,; obtained
both from MFD1 and from microscopic MC simulations.
These comparisons are illustrated in Fig. 11. Obviously,
the range of L used in the present study is too narrow to
obtain the scaling relation with any degree of certainty.
However, the values of |h(mgp)| at different L also agree
well with the estimate for Hpsp obtained in Ref. [5] by
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FIG. 11. “Spinodal phase diagram,” showing the MD,

SD, and CE regions in the (1/InL, H) plane for the
two-dimensional Ising model at 0.87.. The lower, solid curve
is Hrusp from Eq. (41), and the data points (o) close to it are
Hrusp from MFD1 for L=32 and 64. The upper, solid curve
is Hpsp from Ref. [5], obtained from a one-parameter fit of the
relation LocRo to MC data for L=64, 128, 256, 400, and 720.
The short, dotted line indicates the asymptotic slope of Hpsp.
The data points represent different estimates for Hpsp, ob-
tained from MFD1, MC simulations in this work, |h(msp)],
and from MC simulations for larger systems in Ref. [5], as
indicated by the key in the figure. The quantities in the up-
per box are all estimates for Hpsp. In all cases, error bars are
only given where the statistical error is larger than the symbol
size. From right to left the data points correspond to L=24,
32, 64, 96, 128, 256, 400, and 720. See detailed discussion in
Sec. VI.

fitting the proportionality constant in the relation Lx Ry
with R given by Eq. (31) to MC data for L between 64
and 720. We find this noteworthy, considering that this
analytical expression for Hpgp is based on explicitly dy-
namical arguments, whereas |h(msp)| is obtained from a
strictly equilibrium calculation.

To account for this observation, we suggest that mg;
corresponds to the volume fraction at which entropy ef-
fects make the free energy of a configuration consisting
of multiple droplets lower than that of the single-droplet
configuration. We assume that the single droplet is re-
placed by two identical droplets, each with half the vol-
ume of the original droplet. We neglect corrections to the
droplet free energy, including those arising from surface
excitations, which correspond to the power-law prefactor
|H|? in Eq. (26). We only consider the entropy contribu-
tions due to the droplets’ center-of-mass positions, and
we neglect excluded-volume effects. This gives the ap-
proximate zero-field free energies

F(®) = Fama()) + 14 (2752002) ©
X [E(T)]}2 —dlnL (42a)

for the single-droplet configuration and
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F(¢) ~ Fo(mea(T)) + 24 L% 1dB
x (%@) 7 B@)t - 2L

for the two-droplet configuration. Equating Fo(l) and
Féz) we find

d—1 TlnL %
bsp ~ ; . 43
T 2meq(T)[E(T)]) 71 L2 (25_1) (49

(42b)

Inserting ¢,p into the single-droplet approximation for
|h(¢)| obtained from FO through Eq. (38), which is iden-
tical to the expression for Hrusp(®4) given in Eq. (25),
we obtain

|h(¢sp)| = ( (44)

1 1
(24 -1)pE(T) |

InL )
Comparing this result with Eq. (32) for Hpsp we note
that, except for a d-dependent numerical constant of or-
der unity, it has the same asymptotic dependences on L
and T as Hpsp. In particular, |h(¢sp)| does not vanish

as L1, but rather much more slowly as (In L)”ﬁ. As
noted previously and illustrated in Fig. 11, corrections to
this asymptotic behavior for Hpsp, due to the power-law
prefactors in the nucleation rate, are very substantial.
Since analogous corrections were ignored in the approx-
imate derivation of |h(¢sp)| given here, we expect simi-
larly large corrections to apply to it. This is in agreement
with the numerical results shown in Figs. 10 and 11. We
further note that the precise value of the numerical coef-
ficient in our approximate expression for the asymptotic
value of |h(¢sp)| is the result of our choice to consider only
a separation of the single droplet into two equal droplets.
A more careful calculation ought, therefore, to give a
different coefficient. However, the factor (d+1) in the
denominator of Hpsp results specifically from the simul-
taneous nucleation and growth processes that give rise to
the expression for the lifetime in the MD region, Eq. (29).
It is, therefore, unlikely that further improvement of the
equilibrium calculation should yield the same factor in
|h(¢sp)|- Comparing the single-droplet free energy di-
rectly with that of a uniform phase, ignoring entropy
effects, one gets ¢gp L3t [3] and |h(¢sp)| x L™a%,
This result agrees less well with our numerical data than
does the L dependence in Egs. (43) and (44).

For |H|>|h(msp)| the bulk free energy displays no sad-
dle point, but its derivative with respect to m has a min-
imum at mg,. As a consequence, mean-field dynamics
should show a slowing down near msp, as observed in the
present study. However, F'(m) does not contain informa-
tion about the complicated multidroplet configurations
that dominate the dynamics in this region of relatively
strong fields. Consequently, we expect the agreement be-
tween microscopic and mean-field dynamics to be only
qualitative in the MD region.

VII. DISCUSSION

In this paper, we have introduced a class of macro-
scopic mean-field dynamics and have studied in detail

two members of this class, which we call MFD1 and
MFD2. We have demonstrated that these macroscopic
mean-field dynamics replicate many of the qualitative
and quantitative features of the relaxation behavior of
the metastable phase of the two-dimensional nearest-
neighbor Ising model. As a function of the external field
H, four distinct regions of relaxation were observed in
agreement with recent microscopic MC studies [1,5]. In
the single-droplet region at low temperatures, the lead-
ing exponential term in the relaxation time (7) was ob-
tained to within 1% of the exact value. We also obtained
temperature independent estimates for the prefactor ex-
ponents b+c for the two mean-field dynamics. At very
low temperatures we observed an oscillatory behavior in
A(H)=dln{r)/d|H|~! with respect to |H|, in agreement
with discrete-droplet theory. In the low-temperature
limit, simple theoretical estimates of the dynamic spin-
odal field Hpsp, in terms of the temperature and the
system size, were obtained for various dynamics. Our
numerical studies provide excellent agreement with these
predictions.

The mean-field dynamics are constructed with only the
following conditions: (1) locality in the value of the order
parameter m and (2) the correct equilibrium distribution
obtained from the order parameter of the microscopic
model. These two conditions constitute the minimum
requirements for any local dynamic. The reasonable re-
sults obtained from the macroscopic mean-field dynamics
may be somewhat surprising in view of the fact that no
microscopic information is directly included. However,
we believe the relative success of our dynamics becomes
more understandable if one views them as approxima-
tions to the macroscopic dynamic that can formally be
constructed by using a projection-operator formalism to
project the microscopic dynamic onto a master equation
for the one-dimensional order-parameter distribution, as
discussed in Appendix A. The dynamically relevant in-
formation that is retained in F'(m) following this projec-
tion correctly describes the droplet configurations that
provide the rate-determining steps in the decay process.
In particular, these are the droplet and slab configura-
tions that are important near the thermodynamic spin-
odal, the single-droplet configuration characteristic of the
SD region, and the breakdown of the single-droplet con-
figuration into a uniform “gas” of microscopic fluctua-
tions that takes place near the dynamic spinodal. These
aspects were discussed in light of earlier work in Sec. VI.
As a consequence, the mean-field dynamics produce ex-
cellent numerical estimates for both the thermodynamic
and the dynamic spinodal fields.

Comparison between the two proposed dynamics,
MFD1 and MFD2, provides some insight into the depen-
dence of the lifetime 7 on the detailed dynamics. Most
of the characteristic behavior of A predicted by both
continuous- and discrete-droplet theory [5,58] is expected
to hold for different local dynamics. However, the influ-
ence of the detailed dynamic is reflected in the prefactor
exponent b+c. The difference between A(H) as obtained
from MFD1 and MFD2 in the deterministic region sug-
gests that A(H) in this region depends strongly on the
particular dynamic.
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Generally, when the relaxation time is long, the system
spends more time exploring phase space, and, therefore,
the dynamic is more strongly subject to the restricted
bulk free energy F(m), as indicated in this study. When
the relaxation time is short, the details of the particular
dynamic are more important than the bulk free energy.
From the field-theoretical point of view, when the most
probable trajectory from the metastable phase to the un-
stable saddle point is sharply defined, the relaxation time
is usually large, and regardless of the details of the partic-
ular dynamic, one needs to consider only the trajectories
near the most probable one in order to study the decay
of the metastable phase. When the probability distribu-
tion over trajectories is not very sharp, the lifetimes are
usually short and the details of the particular dynamic
play important roles.

The biggest advantage of macroscopic mean-field dy-
namics is that they can provide data for low tempera-
tures and weak fields (in the single-droplet region), for
which the average lifetime of the metastable phase is too
long to be measured with standard MC algorithms. They
also provide data for arbitrary temperatures and fields,
allowing one to obtain accurate estimates of derivatives.
However, the system sizes for which mean-field dynam-
ics can be applied are rather limited by computational
constraints.

In summary, we have presented a method to study
the relevance of the equilibrium properties of a model
to the dynamical relaxation of metastable phases. The
macroscopic dynamics are designed using only the mini-
mal requirements of locality in the relevant order param-
eter and the correct equilibrium free energy projected
on that order parameter. Extensive applications to the
two-dimensional nearest-neighbor Ising ferromagnet on
a square lattice provides convincing evidence that the
characteristic behavior of the dynamical relaxation of the
metastable phases is largely determined by the restricted
bulk free energy F(m). We believe that our approach can
benefit studies of relaxation phenomena for other systems
as well.
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APPENDIX A: RELATION OF OUR
MACROSCOPIC MAGNETIZATION DYNAMICS
TO THE MICROSCOPIC SPIN DYNAMIC

In this appendix, we briefly consider the formal rela-
tionship between our macroscopic magnetization dynam-

ics, MFD1 and MFD2, and the underlying microscopic
dynamic represented by the single-spin-flip Metropolis al-
gorithm with updates at randomly selected sites. The
formal framework for the discussion is the Nakajima-
Zwanzig [25,26] projection-operator formalism for the
master equation, which is equivalent to Mori’s [27]
projection-operator formalism for the equations of mo-
tion of observables [28,29]. We adapt the standard dis-
cussion (see, e.g., Refs. [29,30]), which considers a deter-
ministic microscopic dynamic governed by a quantum-
mechanical or classical Hamiltonian, to the case where
the microscopic dynamic is a discrete-time Markov pro-
cess (possibly derived from a deterministic dynamic at
an even more microscopic level).

For an N-site kinetic Ising model, the microscopic
probability density at time k is a 2¥-dimensional col-
umn vector g(k) which evolves in time according to the
equation

plk+1) = Wp(k) , (A1)

where W is the matrix of microscopic transition proba-
bilities. The probability distribution over the “relevant”
macroscopic variables at time k, X (k), is obtained from
p(k) through the action of a projection operator P,
X(k) =Ppk) . (A2)

Although the dimension of X (k) is 2V, if the only
macroscopic variable considered is the magnetization,
the dimension of the “relevant” space in which X (k)
has nonzero components is N+1. By using Eqgs. (A1)

and (A2), one can write the equation of motion for X (k)
as

X (k+1) = PWp(k) = PW(P+Q)j(k)

=PWX (k) + PW|[Q5(k)] , (A3)
where Q=1—7P is the projection operator onto the “ir-
relevant” orthogonal complement to the relevant space.
The first term in the second line of Eq. (A3) corresponds
to a Markov process for X (k), whereas the second term
contains non-Markov contributions that can be formally
evaluated as follows.
Operating on Eq. (A1) with Q one obtains

Qp(k) = QWp(k—1) = QW(P+Q)f(k—1)

= QWX (k—1) + QW [Q5(k—1)] , (A4)

which is inserted in Eq. (A3). Iterating this procedure a
total of k times, one obtains the final result,

k
X(k+1) =PWX (k) + PW Y [QW] X (k—1)
=1

+Pw [QW]* 95(0) . (A5)
The first term on the right-hand side corresponds to
a Markov process in the relevant subspace. The non-
Markovian second and third terms represent memory
about the relevant variables at earlier times, propagated
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through the irrelevant subspace, and specific information
about the initial state of the irrelevant variables, respec-
tively [30]. The third term can usually be ignored, at
least after a short initial period.

In standard applications of projection-operator tech-
niques, the quality of the resulting approximation de-
pends on the choice of the relevant macroscopic variables.
The approach is most useful whenever there is a large sep-
aration between “fast” and “slow” time scales, and one
usually attempts to include all the slow variables in the
relevant subspace. This ensures that only variables with
short correlation times contribute to the memory effects,
which can then often be ignored or approximated by a
rapidly decaying function. The (most obvious) slow vari-
ables are determined by macroscopic conservation laws or
by spontaneously broken symmetries in the correspond-
ing isolated system [29].

In the present work, we have considered the stochastic
time evolution of the magnetization (our relevant macro-
scopic variable) as a Markov process defined by the tran-
sition probability matrices Wy (for MFD1) or W, (for
MFD2). In doing so, we have performed a Markov ap-
proximation equivalent to ignoring the memory effects
and using W; and W, as approximations for the ma-
trix obtained by contracting PW in Eq. (A5), so that
its dimension becomes N + 1. The macroscopic slow-
ness of the magnetization is related to the spontaneously
broken symmetry between the two ferromagnetic phases
for H=0 below T.. By virtue of energy conservation in
the corresponding closed system, the other obvious slow
macroscopic variable is the total energy. In relegating
it to the irrelevant subspace, mainly for computational
convenience, we have most likely ignored non-negligible
memory effects. By considering only a single relevant
variable we also have excluded nonlinear interactions be-
tween macroscopic variables [29].

The satisfactory agreement between our approximate
macroscopic Markovian dynamics and the MC simula-
tions of the full microscopic dynamic indicates that the
approximations made in the present work are quite rea-
sonable. Nevertheless, the above discussion indicates
that by including the total energy as a second relevant
macroscopic variable in our Markovian mean-field dy-
namics, we could reduce the importance of the neglected
memory effects and allow for nonlinear interactions be-
tween relevant variables. We believe further significant
improvement of the agreement between the approximate,
macroscopic dynamics and the underlying microscopic
dynamic could be achieved in this way.

APPENDIX B: ABSORBING MARKOV CHAINS

In this appendix, we briefly discuss the application of
absorbing Markov chains [32] to obtain the expectation
value and the variance of the first-passage time for es-
cape from the metastable phase. For a given transition
probability matrix W (n,n’), simple matrix calculations
provide the expectation value and the standard deviation
of the first-passage time from one state to another.

Let us consider a random walker that moves between
states 0 < n,n’ < N with transition probabilities
W (n,n’). Starting from an arbitrary initial state X (0),
the probability density after k time steps, X (k), is

X (k) = W*X(0) . (B1)
Without absorbing states, the probability of a Markov
chain is conserved, that is,

> W(n,n) =1 (B2)

for all n. After k time steps the walker is still in some
state, that is,

ETWkEX(0) =1, (B3)
where €T = (1,...,1,...,1) and the superscript T de-
notes the transpose.

Now we place absorbing states at 7 > n.y. Once an
absorbing state is reached, the walker is absorbed and
the Markov chain terminates. Let T be the ncy X Teut
submatrix of W that contains the transition probabilities
between the nc,; transient states. The analog of Eq. (B2)
is not satisfied for T. The probability that the walker is
absorbed at time k is €T(T*~! — T*)X(0). The average
first-passage time to the absorbing states is

(ry = f‘; ETk(TF 1 — T*)X(0) = ETNX(0). (B4)
k=1

The fundamental matrix is defined by N = (I — T)™ %,

where I is the identity matrix. Similarly, the second mo-

ment of the first-passage time can be obtained from [32]

(r%) = €T (2N? - N) X (0) . (B5)

In this work, 7 was divided by the total number of sites
N, so that all times are given in units of MCSS.
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